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Abstract: We consider the diffusion of a non-relativistic heavy quark of fixed mass M , in
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The Green’s function constructed around a static string embedded in a background with

a moving horizon, is identified with the noise correlation function in a Langevin approach.
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order MD(τ)/T (τ). For MD > 1, the diffusion regime is segregated and the energy loss is

Langevin-like. The time dependent diffusion constant D(τ) asymptotes its adiabatic limit
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1. Introduction

The quark-gluon plasma (QGP) created in Relativistic Heavy Ion Collisions at RHIC is

believed to be strongly coupled [1]. The AdS/CFT correspondence [2] has proven to be a

useful tool for addressing issues of a strongly coupled plasma albeit in the limit of a large

number of colors Nc and strong gauge coupling λ = g2
YMNc. A number of nonperturbative

properties in linear response have been recently addressed via the gravity dual calculation

in AdS5 black hole geometry [3]. The transport results bear some relevance to the QGP

plasma at RHIC. Much less is known about the time-dependent evolution of the strongly

coupled plasma. There have been suggestions that the fireball in Relativistic Heavy Ion

Collision (RHIC) can be explained from a dual gravity point of view [4, 5].

In order to model the expanding plasma in a gravity set up, the use of a moving

black hole was suggested in [4]. In [6, 7] (hereon refer to as JP), it was shown that

the moving horizon black hole geometry can be generated by assuming an asymptotycally

expanding perfect fluid in a boost invariant setting. Using conformal invariance and energy-

momentum conservation together with holographic renormalization [8], JP constructed the

bulk geometry from the perfect fluid boundary data. This metric was extended to the case

of shear viscosity [11, 12], R-charge [13] and to a 3 dimensional non-isotropic setting [14].

An exact background with isotropic expansion was worked out in [15].

In this paper we study the diffusion of a non-relativistic heavy quarks in one dimen-

sionally expanding plasma using the JP metric. Heavy quark diffusion have been studied

in a static black hole background in various ways [16 – 22]. Here, we follow the suggestion

in [20] in the static case, by analyzing the momentum fluctuations of a heavy quark in

an expanding plasma, and use it to estimate the drag force and diffusion rate. We will
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use a generalized Langevin equation to assess the diffusion rate. Unlike [21] we suggest

that the green function of string fluctuation should be identified with the correlator of the

fluctuation force rather than the total force in a Langevin approach.

The basic object of this procedure is the gauge-invariant electric-electric force decorre-

lation, which we will calculate using the AdS/CFT duality. The field theory dual (operator)

to a quark displacement(ξ(t)|u=0) is the (gauge invariant) colored force acting on a heavy

quark [20 – 22]. According to the AdS/CFT correspondence the generating function in field

theory should be related with the classical action by

〈exp(i

∫
F (t)ξ(t))〉 = exp(iScl[ξ]) , (1.1)

whose second derivative gives us the symmetrized Wightman function

G(t1, t2) ≡
1

2
〈F (t1)F (t2) + F (t2)F (t1)〉 . (1.2)

It is related to the retarded Green’s function [24]

G(ω) = −coth
ω

2T0
ImGR(ω) , (1.3)

in momentum space. We will calculate GR(ω) from the Nambu-Goto action of the fluc-

tuating string in the JP metric following the way proposed in [20] (section 2). We note

that this decorrelator applies both to heavy and light fundamental quarks, therefore the

decorrelation time is a measure of how the gluon rescattering against external fundamental

probes decorrelate.

In section 2 we start with the JP metric in [6] and derive equations of motion of the

transverse string fluctuation of a heavy quark. We also calculate the retarded Green’s func-

tion, which is translated to an electric force-force correlator (or more precisely decorrelator)

in section 3. In section 4, we compute the momentum fluctuation(broadening) of a heavy

quark. By arguing that a generalized Langevin equation applies for the case,we deduce the

heavy quark diffusion property in the expanding and cooling plasma. Our conclusions are

in section 5.

2. String fluctuation in Janik-Peschanski metric

We consider a heavy particle moving in an expanding plasma. Let tF = 1/T be the colored

electric force decorrelation time (see below) and let tD = MD/T be the diffusion time of

a particle with diffusion constant D and mass M . For times tF < t < tD o r MD > 1,

the force decorrelation can be treated as instantaneous. Thus, the velocity decorrelation

of a heavy quark in a strongly coupled plasma can be followed generically by a Langevin

description. For an expanding plasma the description involves a generalized Langevin of

the form
dp

dt
+ η(t)p(t) = F (t), (2.1)

with both the drag coefficient η(t) and the diffusion constant D(t) time dependent. The

idea here is that the force-force decorrelator can be calculated from the microscopic physics
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and the drag coefficient η(t) is related to the force-force decorrelator by a non-equilibrium

relation [27, 28].

For the drag coefficient, we need to calculate the correlators in a frame which moves

with the particle. So it is enough to consider a particle moving with the expanding plasma.

For a one dimensional expansion, such a comoving frame was introduced by Hwa [9] and by

Bjorken [10] in terms of the rapidity y and the proper time τ of the comoving coordinate

system. τ and y are related to the time coordinate x0, and logitudinal coordinate x3,

through x0 = τ cosh y and x3 = τ sinh y . The Minkowski metric in terms of τ, y can be

written as

ds2 = −dτ2 + τ2dy2 + dx2
⊥, (2.2)

where x⊥ = {x1, x2} are the transverse coordinates.

The gravity dual of the Hwa-Bjorken system was worked out in [6, 7] and the metric

can be written in the following suggestive form

ds2 =
R2

z2

[
−
(
1 − v4

)2

(1 + v4)
dτ2 +

(
1 + v4

)
(τ2dy2 + dx2

⊥) + dz2

]
, (2.3)

where z is the fifth coordinate in AdS5 and v is a scaling variable defined by

v ≡ z

(τ/τ0)
1
3

ε
1
4 , ε ≡ 1

4
(πT0)

4 , (2.4)

Since the horizon is located at v = 1 or z ∼ τ1/3, the black hole horizon may be considered

as moving away from the boundary. We remark that the solution is valid only for late

times (asymptotic solution).

The metric (2.3) is written in Fefferman-Graham coordinate z. It is useful to express

it in a more canonical form, that will prove usefull for a paralell calculation with the static

case. Indeed, by introducing the coordinate change

u(z, τ) ≡ 2v2

1 + v4
, (2.5)

the metric (2.3) is now

ds2 =
π2T 2

0R
2

u(τ/τ0)2/3

[
−f(u)dτ2 + τ2dy2 + dx2

⊥)
]
+

R2

4f(u)

du2

u2

+
R2

9
τ−2dτ2 − R2

3

τ−1

u
√
f(u)

dτdu , (2.6)

with f = 1 − u2. We may ingnore the last two terms since the perfect fluid geometry

is valid only in the scaling limit τ → ∞ and v, u → constant. A further transformation

through,

t/t0 ≡ 3

2
(τ/τ0)

2
3 , (2.7)

– 3 –



J
H
E
P
0
4
(
2
0
0
8
)
0
4
7

yields

ds2 =
π2T 2

0R
2

u

[
−f(u)dt2 +

4

9
t2dy2 +

3

2

t0
t

dx2
⊥)

]
+

R2

4f(u)

du2

u2
. (2.8)

This form is similar to the canonical black hole metic except for the time dependence of

the spacial parts. Also, t and u are not the same variables as in the static case. They are

related to the original variables, x0 and z through (2.4), (2.5) and (2.7). In this transformed

metric (2.8), the black hole horizon is no longer moving away in the fifth direction but is

expanding in the y direction and contracting in the transverse direction as time goes on.

In the background (2.8), let us consider the small string fluctuations in the transverse

direction x1,

δX1 = ξ(t, u) . (2.9)

The relevant Nambu-Goto action is

S =
T0

√
λ

8

∫ ∞

0
dt

∫ ∞

−∞
du

(
3t0
2t

)[
(∂tξ)

2

u
2
3 f(u)

− 4f(u)π2T 2
0

u
1
2

(∂uξ)
2

]
, (2.10)

where
√
λ = R2

α′ after subtracting the unperturbed string action. Notice that the ac-

tion (2.10) is the same as the one in the static black hole metric [20] except for an overall

factor of
(

3t0
2t

)
. The latter stems from the metric component gx1x1 of (2.10), when we

evaluate the induced metric in the Nambu-Goto action. The equation of motion for ξ(t, u)

is

∂2
t ξ −

1

t
∂tξ + 2π4T 4

0 f(u)(1 + 3u2)∂uξ − 4π4T 4
0 uf(u)2∂2

uξ = 0 . (2.11)

To solve (2.11) we define a Fourier-like transform

ξ(t, u) ≡
∫ ∞

−∞

dω

2π

√
iπω

2
tH

(2)
1 (ωt)Ψω(u)ξ̃0(ω) , (2.12)

where H
(2)
1 (ωt) is a Hankel function of the second kind, and Ψω(u) is normalized such that

Ψω(0) = 1. tH
(2)
1 (ωt) is chosen to satisfy the time part of the equation of motion (2.11)

with the correct boundary condition (see below). Notice that we have extended the region

of t from (0,∞) to (−∞,∞).

To proceed, we assume the following ‘completeness relation’

− 1

4

∫ ∞

−∞
dt tH

(2)
1 (ωt)H

(2)
1 (−ω′t) ≃ 1

ω
δ(ω − ω′). (2.13)

which will be understood for small ω 1. While this approximation blurs the rigor of the

arguments to follow, it should nevertheless provide us with an insightful understanding

1The usual completeness of the Hankel transform is in terms of Bessel functions:
R

∞

0
dt tJν(ωt)Jν(ω′

t) =
1
ω

δ(ω − ω
′), whose origin is the asymptotic form of a Bessel function as an exponential function over

√

t.

There is not true completeness for the Hankel function H(1,2) due to the singularity near zero. The use the

completeness of the Hankel function is justified for small ω or large times since: 1)the dominant integral

contribution is coming from the large time region; 2)the JP background is justified asymptotically. The use

of the Hankel function instead of a Bessel function is needed to match the incoming bioundary condition

below.
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of the time scale involved in the relaxation of the diffusion process. These time scales

are paramount to our understanding of the approach to equilibrium of a strongly coupled

quark-gluon plasma such as the one at RHIC.

After separating the time part, the equation for Ψω(u) now reads

∂2
uΨω(u) − 3u2 + 1

2uf(u)
∂uΨω(u) +

w
2

4uf(u)2
Ψω(u) = 0 . (2.14)

where w ≡ ω
πT0

. Notice that (2.14) is of the same form as the one in the static black hole

metric [20]. Near the horizon the solution behaves as

Ψω ∼ (1 − u)±iw/4 , (2.15)

and the minus choice corresponds to the infalling boundary condition. Inserting (2.12)

into the action (2.10) yields the reduced boundary action

Sboundary =
3π2

√
λT 3

0 t0
4

∫
dt

f(u)√
ut
ξ(t, u)∂uξ(t, u)|u=1

u=0

=

∫
dω

2π
ξ̃0(−ω)

[(
3π2

√
λT 3

0 t0
4

)
f(u)√
u

Ψ−ω(u)∂uΨω(u)

]u=1

u=0

ξ̃0(ω) , (2.16)

where we used (2.13). Following [23] we identify the retarded Green’s function, GR(ω), as

GR(ω) ≡
[
−3π2

√
λT 3

0 t0
2

][
f(u)√
u

Ψ−ω(u)∂uΨω(u)

]

u=0

. (2.17)

3. Electric force-force decorrelation

GR(ω) can be calculated analytically only in two limits: ω → 0 and ω → ∞. In the small

ω limit, we may expand the solution in terms of w and solve (2.14) order by order with

the incoming boundary condition,

Ψω = (1 − u)−iw/4

[
1 +

iw

2

(
− tan−1 √u+ ln(1 +

√
u)
)]

+ O(w2) , (3.1)

which gives

lim
ω→0

(
πcoth

πw

2

)
Im

[
f(u)√
u

Ψ−ω(u)∂uΨω(u)

]

u=0

→ 1 . (3.2)

In the large ω limit, we can use the WKB approximation, which yields

lim
ω→0

(
πcoth

πw

2

)
Im

[
f(u)√
u

Ψ−ω(u)∂uΨω(u)

]

u=0

→ π|w|3
2

, (3.3)

in agreement with the zero temperature result [21]. See appendix A for more details.

For general ω, we have to resort to numerical methods. We should perform the numer-

ical computation and compare it with the analytic result in the small and large ω limits
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obtained above. The strategy is as follows. 2 First we find two independent solutions near

the horizon (u ∼ 1)

ΨH
ω,in ≡ (1 − u)−iw/4

[
1 − (1 − u)

(
iw2

8i+ 4w

)]
+ · · · , (3.4)

ΨH
ω,out ≡ (ΨH

ω,i)
∗. (3.5)

Here ΨH
ω,in is the infalling solution and its complex conjugate is the outgoing solution.

Notice that these solutions are valid for all w. Near the boundary (u ∼ 0), there are two

independent solutions

ΨB
ω,0 ≡ u3/2 − w

2

10
u5/2 +

(
3

7
+

w
4

280

)
u7/2 + · · · , (3.6)

ΨB
ω,1 ≡ 1 +

w
2

2
u− w

4

8
u2 +

(
w

2

9
+

w
6

144

)
u3 + · · · . (3.7)

Notice that ΨB
ω,0 vanishes, while ΨB

ω,1 goes to unity near the boundary and both solutions

are real. For the retarded Green’s function, we need the wave function near zero satisfying

infalling boundary condition at the horizon. For this, we take the near-horizon wave-

function (3.4) with the correct boundary condition as the initial data and numerically

integrate it from the horizon to the boundary using (2.14). The solution is expressed as a

linear sum of boundary basis ΨB
ω,0 and ΨB

ω,1

ΨH
ω,in(u) −→(2.14) AΨB

ω,1(u) + BΨB
ω,0(u) . (3.8)

where A and B are complex numbers determined numerically. Notice that the right hand

side goes to A at the boundary while we have to normalize Ψ such that it goes to 1 at

u = 0. Therefore the correctly normalized wave function with correct boundary conditions

is Ψω = A−1ΨH
ω,in(u):

Ψω(u) = ΨB
ω,1(u) +

B
AΨB

ω,0(u), (3.9)

which readily yields

Im

[
f(u)√
u

Ψ−ω(u)∂uΨω(u)

]

u=0

=
3

2
ImB̃ , (3.10)

with B̃ = B
A . Now the Wightman function G(ω) (1.3) is given by

G(ω) =

[
3π

√
λT 3

0 τ0
2

](
πcoth

ω

2T0

)(
3

2
ImB̃(ω)

)
. (3.11)

To complete the numerical calculation, we note that while A is easily accessible nu-

merically in (3.8), B is not. To resolve this problem, we use the following method. First,

2Similar calculations have been done in [25, 26, 21] in other models. Our numerical integration is

different.
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Figure 1: Force-Force decorrelator: (a) G̃(w) =
G(w) − π

2
|w3|[

3π
√

λT 3

0
τ0

2

] (b) G̃(T , s) =
G(T , s)[

3π2
√

λT 4

0
τ0

2T
] [The

long dashed red line: discrete Fourier transform of (a). The short dashed blue line: the divergent

contribution alone. The solid line: the total result.]

by taking the imaginary part of (3.9) we get

ImB̃ =

[
A−1ΨH

ω,in(u)

ΨB
ω,0(u)

]
, (3.12)

and then we evaluate it at any point, say, u = 1. The only remaining part is the value

of ΨB(u) at u = 1, for which we need to numerically integrate from the boundary to the

horizon. We denote the value determined by this procedure by ΨB
ω,0(u −→(2.14) 1). Notice A

is given before by ΨH
ω,in(u −→(2.14) 0). Therefore we get the numerical recipe:

ImB̃ = Im

[
ΨH

ω,in(u = 1 − ǫ)

ΨH
ω,in(u −→(2.14) 0) · ΨB

ω,0(u −→(2.14) 1)

]
, (3.13)

where we take ǫ = 10−6.

The result for (3.11) is plotted in figure 1a, with the large w asymptotic π|w|3
2 sub-

tracted. There is a good agreement asymptotically. The numerical results in time can be

obtained by using the inverse transformation of (2.13) 3

G(t1, t2) = −1

4

∫ ∞

−∞
dωωH

(2)
1 (ωt1)H

(2)
1 (−ωt2)G(ω) . (3.14)

The time-dependence of the problem excludes time-translation invariance. In terms of the

relative and CM coordinates

s ≡ t1 − t2 , T ≡ t1 + t2
2

, (3.15)

the force-force decorrelator is

G(T , s) ≈ 1

T
1√

1 − s2

4T 2

∫
dω

2π
e−iωsG(ω) , (3.16)

3The same comments footnoted after (2.13) apply.
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for t1, t2 ≫ 1, which is an ordinary Fourier transform in the relative time. For s ≪ T the

asymptote G(ω) ∼ |w|3, yields

∫
e−iωs|ω|3 ∼ 1

s4
∼ 1

|t1 − t2|4
. (3.17)

We note that this is a good approximation of the Hankel transformation (2.12) for large

ti. The result (3.17) is expected from the conformal dimension which is 4 of the force-force

decorrelator. Similary for s ∼ T

G(T , s) ∼ 1

T 4
√

T 2 − s2/4
, (3.18)

but it is not reliable due to the nature of our approximation (t1, t2 ≫ 1). In figure 1a, we

show the regular part ofG(ω). In figure 1b, we show its discrete Fourier transform in dashed

red versus sπT0. The short dashed blue line is the divergent contribution alone which is

dominant at small relative times. The solid line is the total result. The decorrelation time

follows readily from the long dashed red curve as

tF ∼ 2

πT0
. (3.19)

This result is important as it indicates that from dual AdS/CFT all electric-electric forces

applied to either heavy or light fundamental probes decorrelate on a short time scale of the

order of 2/πT0 in the static but strongly coupled QGP. We also note that the decorrelation

curve in long dashed-red is stronger than exponential. This time compares favorably with

the time read from the lowest quasi-normal mode w
qn
1 associated to string fluctuations (see

appendix B)

w
qn
1 ≈ 2.69 − 2.29i. (3.20)

This yields a decorrelation time of order 0.44/T0 which is comparable to our 0.64/T0 nu-

merical estimate 4

Using the relation (2.7),

tF = δt = (τ0/τ)
1/3δτ , (3.21)

this ’static’ time translates to a ’moving’ time

δτ ∼ (τ/τ0)
1/3

T0
≡ 1

T (τ)
, (3.22)

which is the natural time dependent temperature, T (τ), in agreement with Bjorken hydro-

dynamics [10, 6].

4The same value was reported in [21] for the fluctuation of the trailing string.
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4. Momentum fluctuation and diffusion of a heavy quark

The short force-force decorrelation time assessed above justifies the arguments presented

in section 2. Again in the time window tF < ∆t < tD, the fluctuations in the momentum

of a massive quark with MD > 1 read

〈∆p(t)2〉 ≡ 〈(p(t+ ∆t) − p(t))2〉 . (4.1)

For a quark at rest this accounts for its momentum broadening by thermal quicks. Us-

ing (3.2), then

〈∆p(t)2〉 =

∫ t+∆t

t
dt1

∫ t+∆t

t
dt2〈F (t1)F (t2)〉 ≈

∫ t+∆t

t
dT
∫ ∞

−∞
dsG(T , s)

= ln

(
1 +

∆t

t

)[
3π

√
λT 3

0 t0
2

]
lim
w→0

(
πcoth

πw

2

)
Im

[
f(u)√
u

Ψ−ω(u)∂uΨω, (u)

]

u=0

≈ 3

2
π
√
λT 3

0 t0
∆t

t
, (4.2)

where we have used the fact that G(T , s) is well localized. From (2.7), the time dependent

momentum transfer is

〈∆p(τ)2〉 = π
√
λT 3

0 t0
∆τ

τ
:= κ(τ)∆τ . (4.3)

For Brownian diffusion which is the case here given the short decorrelation time of the

electric force, this amounts to

κ(τ) =
π
√
λT 3

0

τ/τ0
= π

√
λT 3(τ) . (4.4)

with T (τ) defined in (3.22). κ(τ) is the time-dependent momentum diffusion constant.

Now consider the diffusion of a nonrelativistic heavy quark in the medium of which

temperature is cooling down adiabatically. From above it follows that the Langevin equa-

tion captures the essentials of the equilibration in the diffusion regime. Since the medium

is expanding, the appropriate description is given by

dp(τ)

dτ
= −ηD(τ)p(τ) + F (τ) , 〈F (τ)〉 = 0 . (4.5)

where η(τ) is a time-dependent drag coefficient which is related to F (τ) by

η(τ) =
1

2MT (τ)

d

dτ

∫ τ

0
dτ1

∫ τ

0
dτ2〈F (τ1)F (τ2)〉 =

κ(τ)

2MT (τ)
. (4.6)

One way to derive this is to follow [28], where all arguments are done for small time steps

∆t whereby the expanding medium is frozen.

Multiplying both sides of (4.5) by x(τ) and taking the ensemble average of the product

one gets an ordinary differential equation,

d2

dτ2
〈x2〉 + η(τ)

d

dτ
〈x2〉 − 2〈v(τ)2〉 = 0 . (4.7)

– 9 –
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where the only property of F (τ) we need is 〈x(τ)F (τ)〉 = 〈x(τ)〉〈F (τ)〉 = 0, which is a

basic assumption of the Langevin equation. The time-dependent diffusion rate D(τ) reads

D(τ) ≡ 1

2

d

dτ
〈x2〉 . (4.8)

so that (4.7) is

Ḋ(τ) + η(τ)D(τ) − 〈v(τ)2〉 = 0 . (4.9)

To solve (4.9) we need two inputs: η(τ) and 〈v(τ)2〉. η(τ) is given by (4.4) and (4.6),

η(τ) =
π
√
λT (τ)2

2M
, (4.10)

which is similar to the static case [17, 19, 20] except for the time dependent tempera-

ture. This confirms the adiabatic nature of the expansion in the case of short force-force

decorrelations. Using the adiabatic form of the equipartition theorem, we have

< v(τ)2 >=
T (τ)

M
. (4.11)

Using (4.10) and (4.11), we now have

Ḋ(τ) + a τ−2/3D(τ) − b τ−1/3 = 0, (4.12)

with a = η0τ
2/3
0 and b = T0τ

1/3
0 /M . The solution is

D(τ) =
b

a
τ1/3 +D(0)e−3aτ1/3

.

This result is important as it shows how the diffusion rate for a quark changes in an

expanding medium. At short times it is D(0) while at large times it asymptotes

D(τ) =
2

π
√
λT (τ)

. (4.13)

which is the result in [20] with an adiabatically changing temperature. In a way, this

justifies a posteriori the use of the ‘completeness relation’ (2.13) for large times T . The

cross over between short and long times is exponential and of order 3aτ1/3 = 1 in time.

so (4.13) is reached for τ/τ0 = (1/3η0τ0)
3. At RHIC τ0 ≈ 1 fm so that τ/τ0 ≈ 1/η3

0 in the

Bjorken phase. Although our arguments rely on large times within the diffusion window

(see above) the cross over regime can still be approached albeit from above.

5. Conclusion

We have analyzed the diffusion of a heavy quark in an expanding and strongly coupled

QGP using the AdS/CFT construction. Our arguments provide some insights to a truly

non-equilibrium phenomenon at strong coupling. Our analysis was restricted to an asymp-

totically Bjorken expanding fluid which is dual to the JP metric.
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In the comoving frame the time-dependent diffusion problem is mapped onto a time-

independent one, whereby the diffusion is captured in a retarded Green’s function with

proper boundary conditions in the gravity dual space. The Green’s function reflects on

the electric nature of the noise in the rest frame of a massive quark. It is important to

note that the noise (force-force) decorrelation is short with tF ∼ 2/πT0 for both ligh and

heavy fundamental quarks. A strongly coupled QGP randomize the electric correlations

very efficiently.

If we denote by TD = MD/T the diffusion time, for times tF < t < tD a diffusion

regime for massive quarks open up whereby a generic and memoriless Langevin description

holds. This desciption requires the knowledge of only two underlying moments of the phase

space distribution: the average shift captured by the drag and the diffusion constant. Our

construction allows the generalization of these concepts to a time-dependent Langevin

description pertinent for an expanding fluid. We have found that asymptotic diffusion sets

in on a time scale τ ∼ 1/η3
0 . This estimate is reached from the generic character of the

Langevin description.

Finally and while we have used the construct in [3] for the retarded Green’s function,

it will be of some interest to check explicitly this using the arguments presented in [30].
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A. WKB for large w

In this appendix we solve (2.14) for large w. To use the WKB approximation in [23, 25],

we need to transform (2.14) to a Schrödinger type equation. By a change of variable

φ(u) ≡
√

1 − u2

u1/4
Ψω, (u) , (A.1)

(2.14) transforms to

d2φ

du2
− V φ = 0 , V ≡ −−5 + 18u2 + 3u4 + 4uw2

16u2(1 − u2)2
, (A.2)

where V plays the role of a potential. V will be approximated as follows,

u ≈ 1 : − 4 + w
2

16(1 − u)2
,

WKB : − w
2

4u(1 − u2)2
,

u ≈ 0 :
5

16u2
− w

2

4u
, (A.3)
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and the corresponding solutions are

u ≈ 1 : (1 − u)
1
2
− iw

4 , (1 − u)
1
2
+ iw

4 ,

WKB :

√
2
√
u(1 − u2)

w
ei

1
2
(wtan−1(

√
u)+wtanh−1(

√
u)) ,

√
2
√
u(1 − u2)

w
e−i 1

2
(wtan−1(

√
u)+wtanh−1(

√
u)) ,

u ≈ 0 :
1

u1/4
ei
√

uw(1 − i
√
uw) ,

1

u1/4
w

3
e−i

√
uw(1 + i

√
uw) . (A.4)

Since the solutions are valid only in the limited region we need to tie them to fulfill the

expected boundary conditions. There are two boundary conditions: One is the incoming

boundary condition near the horizon and the other is the normalization (Ψω, (0) = 1).

The incoming solution near the horizon is Ψω,∼ (1 − u)−
iw
4 and it corresponds to φ =

(1− u)
1
2
− iw

4 . It can be shown that all the first parts of the solutions are connected to each

other so that the physical solution near u = 0 is

Ψω,= ei
√

uw(1 − i
√
uw) , (A.5)

which gives us

lim
w→0

Im

[
f(u)√
u

Ψ−w(u)∂uΨω, (u)

]

u=0

→ πw
3

2
. (A.6)

B. Quasi-normal modes

In this section we compute the lowest quasi-normal mode following the method presented

in [29]. By a change of variable

y ≡ 1 − u , (B.1)

eq. (2.14) can be reduced to the Heun equation:

∂2
yψ(y) +

3(1 − y)2 + 1

2y(1 − y)(2 − y)
∂yψ(y) +

w
2

4y2(1 − y)(2 − y)2
ψ(y) = 0 . (B.2)

where y=0(at horizen) is a regular singular point with characteristic exponent {−iw4 , iw4 }.
The quasinormal mode is the solution of (B.2) obeying the incoming boundary condition at

the horizen y = 0 and the vanishing Dirichlet boundary condition at y = 1. So we choose

the exponent −iw4 at y = 0. To match the boundary condition at y = 1, it is convenient

to transform (B.2) once more by,

ψ(y) ≡ y−i w

4 (y − 2)−
w

4 χ(y) . (B.3)

Then (B.2) is reduced to the standard form of the Heun equation.

∂2
yχ(y) +

(
γ

z
+

δ

z − 1
+

ǫ

z − 2

)
∂yχ(y) +

αβz − q

z(z − 1)(z − 2)
χ(y) = 0 , (B.4)
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where

αβ :=
iw2

8
− w

8
(1 + i) , γ := 1 − i

w

2
, (B.5)

δ = −1

2
, ǫ = 1 − w

2
, q := −w

2

8
(2 − i) − w

4
.

At y = 0, the local series solution corresponding to the zero characteristic exponent and

normalized to 1 is given by

χ0(y) =
∞∑

n=0

an(w)yn , (B.6)

where

a0 = 1 ,

a1 =
q

2γ
, (B.7)

an+2 +An(w)an+1 +Bn(w)an = 0 (n ≥ 2) ,

An(w) := −(n+ 1)(2δ + ǫ+ 3(n+ γ) + q

2(n + 2)(n + 1 + γ)
,

Bn(w) :=
n2 + n(γ + δ + ǫ− 1) + αβ

2(n + 2)(n + 1 + γ)
.

At y=1, we get the boundary value using the series (B.6)

χ0(1) =
∞∑

n=0

an(w) , (B.8)

To find the quasinormal modes, we need to find the zeroes of (B.8) in the complex w plane.

This is done by truncating the series after a large number of terms

|χ0(1)
N |2 := |

N∑

n=0

an(w)|2 = 0 . (B.9)

We search for the minimum of |χ0(1)
N |2, and check that the minimum value is zero.
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